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ABSTRACT

We generalize the principle of Teichmiiller contraction and deduce the
Hamilton-Krushkal condition for extremal quasiconformal mappings in
the Teichmiiller space of a closed set in the Riemann sphere.

1. Introduction

Throughout this paper, we shall assume that E is a closed subset of the Riemann
sphere, and that 0, 1, and oo belong to E. The Teichmiiller space of E, which we
denote by T'(E), was first studied by G. Lieb in his doctoral dissertation [11]. He
proved that T(F) is a complex Banach manifold and gave some applications of
T(E) to the theory of holomorphic motions. In [12], it was shown that T(E) is
a universal parameter space for holomorphic motions of the set E over a simply
connected complex Banach manifold. Further properties of T'(E) and applica-
tions to holomorphic motions have been reported in the recent papers [3], (4], [6]
and [12].

In this paper we study the Teichmiiller metric on T'(E). We prove the principle
of Teichmiiller contraction for T(E) and use it to obtain the Hamilton-Krushkal
condition. N. Lakic has an independent unpublished proof of Teichmiiller con-
traction for T(E), based on extending the Reich-Strebel inequalities to the T'(E)
setting. We base our proof on an approximation technique that was central in
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[12]. The idea is to apply the classical principle of Teichmiiller contraction to
the Teichmiiller space of the sphere punctured at finitely many points of E. The
present paper is a sequel to [12].

ACKNOWLEDGEMENT: I wish to express my gratitude to my thesis advisor
Professor Clifford J. Earle for his encouragement and valuable suggestions. I
am also grateful to the referee for suggesting that I include the explicit estimates
in Theorem 3.1 and for pointing out an open question.

2. The Teichmiiller metric on T(E)

In this section we summarize some basic facts about the Teichmiiller space T'(E).
We refer the reader to [6] for a more detailed discussion.

2.1. BaAsiC DEFINITIONS. Recall that a homeomorphism of C is called
normalized if it fixes the points 0, 1, and co. Two normalized quasiconfor-
mal self-mappings f and g of C are called E-equivalent if and only if f~log
is isotopic to the identity rel E. The Teichmiiller space T(FE) is the set of
all F-equivalence classes of normalized quasiconformal self-mappings of C. The
basepoint of T(E) is the E-equivalence class of the identity map.

Let M(C) denote the open unit ball of the complex Banach space L>(C).
Each p in M(C) is the Beltrami coefficient of a unique normalized quasiconformal
homeomorphism w* of C onto itself, so we shall often refer to the elements of
M (C) as Beltrami coefficients. The basepoint of M(C) is the zero function.

We define the quotient map Pg : M(C) — T(E) by setting Pg(u) equal to
the E-equivalence class of w#*. Obviously Pg maps the basepoint of M (C) to the
basepoint of T(F). In [11] Lieb proved that T(F) is a complex Banach manifold
such that the map Pg from M(C) to T(E) is a holomorphic split submersion
(also see [6]).

The Teichmiiller distance das(p, v) between p and v on M(C) is defined by

p—v

dp(p,v) = tanh™! —

The Teichmiiller metric on T(FE) is the quotient metric
drg)(s,t) = inf{dp (i, v) : p and v in M(C), Pg(p) = s and Pg(v) =t}

for all s and ¢ in T(E).
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2.2. FORGETFUL MAPS. If E is a subset of the closed set E and g is in M(C),
then the E-equivalence class of w* is contained in the E-equivalence class of w#.

Therefore, there is a well-defined ‘forgetful map’ pg g from T(E) to T(E) such
that Pg = PiE© Py. 1t is easy to see that this forgetful map is a basepoint
preserving holomorphic split submersion. It is also weakly distance decreasing
with respect to the Teichmiiller metrics.

3. The main results

In this section 037 and Or denote the basepoints of M(C) and T'(E) respectively.

Definition 3.1: A Beltrami coefficient u in M(C) is extremal in its F-equivalence
class if dp(g) (07, Pe(1)) = dar(Onr, ).

Definition 3.2: We denote by A(FE) the closed subspace of L!(C) consisting of
the functions f in L!(C) whose restriction to the complement E¢ = C\ E of E
is holomorphic.

Definition 3.3: Let u € L>(C). The Hamilton—Krushkal norm of 4 relative
to T'(E) is defined by:

llull g ey = sup l//mbdxdy‘, ¢ € A(E).
fl¢ll=1 K
In other words, ||u|| gk () is the norm of the linear functional
2.(9) =//,u¢d:cdy on A(E).
c

The following theorem is the principle of Teichmiiller contraction for T'(E).

THEOREM 3.1: Let p € M(C) be given with ||p||lcc > 0 and let Pg(p) = 7 in
T(E). Then we have the following:
Given € > 0, there exists a § > 0 depending only on ¢ and ||p||s such that

(3.1) lellaxEy < (1=90)ulloo  if drgy (01, 7) < dpr(Opr, 1) — €.
Given 6 > 0, there exists an € > 0 depending only on § and ||us|lec such that
(3.2) drEy(07,7) <dp(Opr, ) — € if [[pllmrey < (1 — 8|l oo-

As a corollary we obtain the Hamilton—Krushkal condition for extremality in

T(E):
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COROLLARY 3.2: A Beltrami coefficient p is extremal in its E-equivalence class
if and only if ||ulleo = l|ull HK(E)-

Remark: Our proof of Theorem 3.1 yields explicit estimates for § and € in (3.1)
and (3.2) respectively. See the remark in §6.

4, The finite case

Let E be a finite set. Its complement E¢ = Q is the Riemann sphere with
punctures at the points of E. Since T(E) and the classical Teichmiiller space
Teich($2) are quotients of M(C) by the same equivalence relation, T(F) can
be naturally identified with Teich(€2) (see {12]). Under this identification dp(z)
becomes the (classical) Teichmiiller metric for Teich(€2) (see [13] for the standard
definitions).

In addition, when E is finite the Hamilton-Krushkal norm of p relative to T(E)
is simply the norm of the linear functional that u induces on the Banach space
of integrable holomorphic functions on €. Therefore in the finite case Theorem
3.1 and Corollary 3.2 are the classical principle of Teichmiller contraction and
Hamilton-Krushkai condition for Teich(£2) (see [8] and [7] respectively; also see

[9))-

5. Approximation by finite subsets

Let E be infinite and let Eq, Es, ..., E,,... be a sequence of finite subsets of £
such that {0,1,00} C By C--- C E, C --- and |J;2, Ey, is dense in E.

Let 0 be the basepoint of T(F), and for each n > 1, let m, be the forgetful
map pg,g, from T(E) to T(E,) (see §2.2). For any 7 in T(E) and n > 1 let
Tn = Tn(7). In particular, 0, = m,(0) is the basepoint of T(E,) for all n > 1.

Since forgetful maps are weakly distance decreasing it is easy to see that

(6.1) dr(£,)(On, Tn) < dr(E,41)(On+1, Tnt1) < dr(ey(0,7)

for all 7 in T(F) and = > 1. Our proof of Theorem 3.1 depends crucially on the
following stronger result, which is proved in [12].

LEMMA 5.1: For each 7 in T(E) the increasing sequence {dr(g,)(0n,Tn)}
converges to dr(g)(0, 7).

We shall also need the following lemma, which is an analogue of Lemma 5.1
for the spaces A(E,) and A(E).
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LEMMA 5.2: Let the infinite closed set E and the finite subsets F,, n > 1, be as
above, and let p belong to L°°(C). The sequence{||i||#xk(g,)} is increasing and
converges to ||i|| gk (E)-

Proof: Since E,, C E,,+1 C E for n > 1, it is obvious from Definition 3.2 that
A(E,) C A(Epn41) C A(E) for all n > 1. Definition 3.3 therefore implies that
the sequence {||p|lnx(E,)} is increasing and is bounded above by ||u|| gk (k). To
prove that the sequence converges to ||u|| ik (g) it suffices to show that the union
of the spaces A(E,,) is dense in A(FE).

Since each E,, is a finite set, each A(F,) is the finite dimensional space of
rational functions in L'(C) whose poles all belong to E,,. Therefore the union
of the spaces A(E,) is the space of rational functions in L'(C) whose poles all
belong to the dense subset | J,, E, of E. That space of rational functions is dense
in A(F) by a theorem of Lakic (see the proof of Corollary 7 in [10] or Corollary
2.2 in [2]). 1

6. Proofs of the main results

Proof of Theorem 3.1: As we saw in §4, the fact that each F,, is finite implies
the following:

(i) Given € > 0, there exists a § > 0, depending only on € and ||uf|« such that
for every n > 1:

(6.1) lellax e, < (L=0)llulle  if dr(g,)(On, Tn) < dar(Orr, 1) — €.

(ii) Given é > 0, there exists an € > 0, depending only on é and ||ul« such
that for every n > 1:

(6.2) A1 (E,)(0n, Tn) < da(On, 1) — € if |l (e,) < (1 = 0)]11t]|co-

Suppose that ¢ > 0 is given and drg)(0,7) < dp(0p, ) — €. By (5.1) we
have dp(g,)(On,7n) < dap(Opr, ) — € for each n > 1. Therefore, by (6.1) there
exists a § > 0, depending only on € and ||p||c, such that for each n > 1, we
have ||p||lpk(e,) < (1 = 0)|lpllco. Lemma 5.2 immediately gives ||pllaxE) <
(1 — ) ll¢llco and this proves (3.1).

Next, suppose that § > 0 is given and ||u||px (&) < (1 - 8)||¢llc. By Lemma
5.2, we have ||ul|gk(g,) < (1 — 6)||ulloo for each n > 1. By (6.2) there exists an
€ > 0, depending only on 4 and ||| such that dr(E,)(On, Tn) < dpr(Opr, 1) — €
for each n > 1. Tt follows from Lemma 5.1, that dpg)(0,7) < dp(Oa, p) — €
which proves (3.2). |
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Remark: Theorem 10 in Chapter 4 of [9] yields explicit values for § and € in
(6.1) and (6.2) respectively. The proof of Theorem 3.1 shows that these values
can also be used in (3.1) and (3.2).

Writing k = ||uflco We get

tanh(e)
8k

for (3.1). Note that § depends only on k and .
Similarly, for (3.2) (for 0 < é < 1) we get

6= (1-k)>*1-k?

tanh(e) = k(1 — k)%6

where € depends onlyon k and 8. (For § > 1, (3.2) is vacuous.) The computations
are straightforward and are left to the reader.

Proof of Corollary 3.2: The proof follows easily from Definition 3.1 and Theorem
3.1. In fact, if ||glle = |[ellzk(E) and p is not extremal in its E-equivalence
class, then there exists an € > 0 such that dr(x)(0, Pe(p)) < dm(0m, 1) — €. By
Theorem 3.1, there exists a § > 0 such that ||u||gk (&) < (1-06)||#lle and we get
a contradiction. The other direction is equally obvious. |

7. An open question

Earle, Gardiner and Lakic have defined the Asymptotic Teichmiiller space AT (X)
when X is a Riemann surface and have shown that AT (X) is a complex manifold
(see [5]). The principle of Teichmiiller contraction also holds for the Asymptotic
Teichmiiller space; see Chapter 14 of [9] for a proof. It would be interesting to de-
fine the Asymptotic Teichmiiller space AT(E) and study Teichmiiller contraction
in that setting.

References

[1] L. Bers and H. L. Royden, Holomorphic families of injections, Acta Mathematica
157 (1986), 259-286.

[2] C.J. Earle, The Ahlfors Mollifiers, Contemporary Mathematics 256 (2000), 11-16.

[3] C. 1. Earle, F. P. Gardiner and N. Lakic, Vector fields for holomorphic motions of
closed sets, in Lipa’s legacy, Contemporary Mathematics 211 (1997), 193-225.

[4] C. J. Earle, F. P. Gardiner and N. Lakic, Isomorphisms between generalized
Teichmiiller spaces, in Complez Geometry of Groups, Contemporary Mathematics
240 (1999), 97-110.



Vol. 125, 2001 TEICHMULLER CONTRACTION 51

[5] C. J. Earle, F. P. Gardiner and N. Lakic, Asymptotic Teichmiiller space, Part I:
The complex structure, Contemporary Mathematics 256 (2000), 17-38.

(6] C. J. Earle and S. Mitra, Variation of Moduli under Holomorphic Motions,
Contemporary Mathematics 256 (2000), 39-67.
[7] F. P. Gardiner, Teichmiiller Theory and Quadratic Differentials, Wiley-
Interscience, New York, 1987.
[8] F. P. Gardiner, On Teichmiiller contraction, Proceedings of the American Mathe-
matical Society 118 (1993), 865-875.
[9] F. P. Gardiner and N. Lakic, Quasiconformal Teichmiiller Theory, Mathematical
Surveys and Monographs 76, American Mathematical Society, Providence, 2000.
[10] N. Lakic, Infinitesimal Teichmiiller geometry, Complex Variables. Theory and
Application 30 (1996), 1-17.
[11} G. Lieb, Holomorphic motions and Teichmiiller space, Ph.D. dissertation, Cornell
University, 1990.
[12] S. Mitra, Teichmiiller spaces and holomorphic motions, Journal d’Analyse
Mathématique 81 (2000), 1-33.

{13] S. Nag, The Complex Analytic Theory of Teichmiiller Spaces, Wiley, New York,
1988.



