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ABSTRACT 

We generalize t h e  principle of  Teichmiiller cont rac t ion  and  deduce  the  

H a m i l t o n - K r u s h k a l  condi t ion for ex t r emal  quas iconformal  mapp ings  in 

the  Teichmiiller space of a closed set in the  R i e m a n n  sphere.  

1. I n t r o d u c t i o n  

Throughout this paper, we shall assume that  E is a closed subset of the Riemann 

sphere, and that  0, 1, and cx~ belong to E.  The Teichmiiller space of E,  which we 

denote by T(E) ,  was first studied by G. Lieb in his doctoral dissertation [11]. He 

proved that  T(E) is a complex Banach manifold and gave some applications of 

T(E) to the theory of holomorphic motions. In [12], it was shown that T(E) is 

a universal parameter space for holomorphic motions of the set E over a simply 

connected complex Banach manifold. Further properties of T(E) and applica- 

tions to holomorphic motions have been reported in the recent papers [3], [4], [6] 

and [12]. 

In this paper we study the Teichmiiller metric on T(E). We prove the principle 

of Teichmiiller contraction for T(E) and use it to obtain the Hamilton-Krushkal 

condition. N. Lakic has an independent unpublished proof of Teichmiiller con- 

traction for T(E) ,  based on extending the Reich-Strebel inequalities to the T(E) 
setting. We base our proof on an approximation technique that  was central in 
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[12]. The idea is to apply the classical principle of Teichmiiller contraction to 

the Teichmfiller space of the sphere punctured at finitely many points of E.  The 

present paper is a sequel to [12]. 

ACKNOWLEDGEMENT: I wish to express my gratitude to my thesis advisor 

Professor Clifford J. Earle for his encouragement and valuable suggestions. I 

am also grateful to the referee for suggesting that I include the explicit estimates 

in Theorem 3.1 and for pointing out an open question. 

2. T h e  T e i c h m i i l l e r  m e t r i c  o n  T(E) 

In this section we summarize some basic facts about the Teichmiiller space T(E). 
We refer the reader to [6] for a more detailed discussion. 

2.1. BASIC DEFINITIONS. Recall that a homeomorphism of C is called 

n o r m a l i z e d  if it fixes the points 0, 1, and oc. Two normalized quasiconfor- 

mal self-mappings f and g of C are called E-equivalent if and only if f - 1  o g 

is isotopic to the identity rel E.  The Te ichmi i l l e r  space  T(E) is the set of 

all E-equivalence classes of normalized quasiconformal self-mappings of C. The 

b a s e p o i n t  of T(E) is the E-equivalence class of the identity map. 

Let M(C) denote the open unit ball of the complex Banach space L~(C) .  

Each it in M(C) is the Beltrami coefficient of a unique normalized quasiconformal 

homeomorphism wU of C onto itself, so we shall often refer to the elements of 

M(C) as Beltrami coefficients. The basepoint of M(C) is the zero function. 

We define the quotient map PE : M(C) -+ T(E) by setting PE(#) equal to 

the E-equivalence class of w ~. Obviously PE maps the basepoint of M(C) to the 

basepoint of T(E). In [11] Lieb proved that T(E) is a complex Banach manifold 

such that the map PE from M(C) to T(E) is a holomorphic split submersion 

(also see [6]). 

The Teichmiiller distance dM(it, v) between # and u on M(C) is defined by 

i t - p  dM(#,u) = tanh -1 ~ . 

The T e i c h m i i l l e r  m e t r i c  on T(E) is the quotient metric 

dT(E)(s,t) = inf{dM(it, u) : it and u in M(C),PE(it) = s and PE(u) = t} 

for all s and t in T(E). 
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2.2. FORGETFUL MAPS. If E is a subset of the closed se t /~  and # is in M(C), 

then the/~-equivalence class of w ~ is contained in the E-equivalence class of w ~. 

Therefore, there is a well-defined 'forgetful map' P~,E from T(/~) to T (E)  such 

that  PE ---- PB,E o Pk.  It is easy to see that this forgetful map is a basepoint 

preserving holomorphic split submersion. It is also weakly distance decreasing 

with respect to the Teichmfiller metrics. 

3. T h e  main  resul ts  

In this section 0M and 0 T denote the basepoints of M(C) and T ( E )  respectively. 

Definition 3.1: A Beltrami coefficient # in M(C) is extremal in its E-equivalence 

class if dT(E)(OT , PE(]~) ) = dM(OM, #). 

Definition 3.2: We denote by A(E)  the closed subspace of LI(C) consisting of 

the functions f in L 1 (C) whose restriction to the complement E c = C \ E of E 

is holomorphic. 

Definition 3.3: Let # C L~(C) .  The H a m i l t o n - K r u s h k a [  n o r m  of # relative 

to T ( E)  is defined by: 

IJ lI.K( ) -- sup f f  dxdy, A(E) 
I1¢11=1 J J 

c 

In other words, [[#[]HK(E) is the norm of the linear functional 

~,(¢)=ff#¢dxdy on A(E).  

c 

The following theorem is the principle of Teichmfiller contraction for T(E) .  

THEOREM 3.1: Let # E M(C) be given with [[#1[~ > 0 and let PE(#) = T in 

T(E) .  Then we have the following: 

Given c > 0, there exists a 5 > 0 depending only on e and ][#[[~ such that 

(3.1) H#[[HK(E) <-- ( 1 -  5)[[#[]~ ifdT(E)(OT, r) <__ d M ( O M , # ) -  ~. 

Given 5 > O, there exists an ~ > 0 depending only on 5 and II#]Ic¢ such that 

(3.2) dr(~)(0r, ~) _< d~(0~, ~) - ~ i ~  II~II-~(E) _< (1 - 5 ) I I . 1 1 o o .  

As a corollary we obtain the Hamilton-Krushkal condition for extremality in 

T(E) :  
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COROLLARY 3.2: A Bettrami coefficient p is ext rema/ in  its E-equivalence class 
if and only if I1~11~ = II~IIHK(E). 

Remark: Our proof of Theorem 3.1 yields explicit estimates for 5 and e in (3.1) 

and (3.2) respectively. See the remark in §6. 

4. T h e  f in i te  case 

Let E be a finite set. Its complement E c = ~ is the Riemann sphere with 

punctures at the points of E.  Since T(E) and the classical Teichmiiller space 

Teich(ft) are quotients of M(C) by the same equivalence relation, T(E) can 

be naturally identified with Teich(f~) (see [12]). Under this identification dT(E) 
becomes the (classical) Teichmiiller metric for Teich(f~) (see [13] for the standard 

definitions). 

In addition, when E is finite the Hamilton-Krushkal norm of # relative to TiE ) 
is simply the norm of the linear functional that # induces on the Banach space 

of integrable holomorphic functions on ~. Therefore in the finite case Theorem 

3.1 and Corollary 3.2 are the classical principle of Teichmfiller contraction and 

Hamilton-grushkai  condition for Teich(~) (see [8] and [7] respectively; also see 

[9]). 

5. Approximation by finite subsets 

Let E be infinite and let El ,  E 2 , . . . ,  E n , . . .  be a sequence of finite subsets of E 

E such that  {0, 1, oc} C E1 C .-- C En C --. and Un=x n is dense in E.  

Let 0 be the basepoint of TIE), and for each n > 1, let rn  be the forgetful 

map PE,E, from T(E) to T(En) (see §2.2). For any r in T(E) and n > 1 let 

Tn = ~rn(r). In particular, 0n = ~rn(0) is the basepoint of T(En) for all n _> 1. 

Since forgetful maps are weakly distance decreasing it is easy to see that 

(5.1) dT(En)iOn, Tn) ~_ dT(En+t)iOn+l, "rn+l) _~ dT(E)( O, T) 

for all r in T(E) and n _> 1. Our proof of Theorem 3.1 depends crucially on the 

following stronger result, which is proved in [12]. 

LEMMA 5.1: For each ~- in T(E) the increasing sequence {dT(E,)(On,Tn)} 
converges to dT(E) (0, r). 

We shall also need the following lemma, which is an analogue of Lemma 5.1 

for the spaces A(En) and A(E). 



Vol. 125, 2001 TEICHMULLER CONTRACTION 49 

LEMMA 5.2: Let the infinite closed set E and the finite subsets En, n >_ 1, be as 
above, and let It belong to L °° (C). The sequence{[[It[[HK(E~)} is increasing and 
converges to [[It[[HK(E). 

Proo~ Since E,~ c En+l C E for n > 1, it is obvious from Definition 3.2 that  

A(En) C A(En+I) C A(E)  for all n _> 1. Definition 3.3 therefore implies that  

the sequence {llItllHg(En)} is increasing and is bounded above by IIItlIHK(E)" To 

prove that  the sequence converges to IlItllgg(E) it suffices to show that  the union 

of the spaces A(E,~) is dense in A(E).  
Since each Eu is a finite set, each A(En) is the finite dimensional space of 

rational functions in LI(C) whose poles all belong to E,~. Therefore the union 

of the spaces A(En) is the space of rational functions in L I (c )  whose poles all 

belong to the dense subset LJ,~ En of E.  That  space of rational functions is dense 

in A(E)  by a theorem of Lakic (see the proof of Corollary 7 in [10] or Corollary 

2.2 in [2]). | 

6. P r o o f s  o f  t h e  m a i n  r e su l t s  

Proof of  Theorem 3.1: As we saw in §4, the fact that each E,~ is finite implies 

the following: 

(i) Given e > 0, there exists a 5 > 0, depending only on e and [l#ll~ such that 

for every n > 1: 

(6.1) ItitllHg(En) <-- (1 -- 5)11#1t~ if dT(E,~)(0n, 7n) ~_ dM(OM, I1) -- e. 

(ii) Given (f > 0, there exists an e > 0, depending only on (f and I1#11~ such 

that  for every n > 1: 

(6.2) dT(E~)(On, "in) ~_ dM(OM, It) -- C if tlitlIHK(E,~) ~-- (1 -- 5)11#11~. 

Suppose that  e > 0 is given and dT(E)(O,T ) ~ dM(OM, it) -- c. By (5.1) we 

have dT(E.)(On,  Tn) ~_ dM(OM, it) -- C for each n > 1. Therefore, by (6.1) there 

exists a (f > 0, depending only on e and II#tloo, such that  for each n > 1, we 

have II#IIHK(E,) <-- (1 -- 5) 11#11~" Lemma 5.2 immediately gives II#IIHK(E) <-- 
(1 - -  (f)ll#ltc¢ and this proves (3.1). 

Next, suppose that  (f > 0 is given and II#IIHK(E) --< (1 -- ~)11#11~" By Lemma 

5.2, we have II#IIHK(En) <-- (1 -- (f)ll#ll~ for each n _> 1. By (6.2) there exists an 

e > 0, depending only on 5 and I1#11~ such that  dT(En)(On, Tn) ~_ dM(OM, It) -- e 

for each n _> 1. It follows from Lemma 5.1, that  dT(E)(O,T ) ~_ dM(OM, It ) -- e 

which proves (3.2). | 
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Remark: Theorem 10 in Chapter 4 of [9] yields explicit values for ~ and ¢ in 

(6.1) and (6.2) respectively. The proof of Theorem 3.1 shows that these values 

can also be used in (3.1) and (3.2). 

Writing k = I]#[]oo we get 

= (1 - k)2(1 - k2) tanh(~) 
8k 

for (3.1). Note that  6 depends only on k and e. 

Similarly, for (3.2) (for 0 < 5 _< 1) we get 

tanh(e) = k(1 - k)25 

where ¢ depends onlyon k and 6. (For 6 > 1, (3.2) is vacuous.) The computations 

are straightforward and are left to the reader. 

Proof of Corollary 3.2: The proof follows easily from Definition 3.1 and Theorem 

3.1. In fact, if [[#[Ioo -- II#[IHK(E) and # is not extremal in its E-equivalence 

class, then there exists an e > 0 such that  dT(E) (O , RE(l_t)) ( d M ( O M ,  I-t) -- e. By 

Theorem 3.1, there exists a 6 > 0 such t h a t  ]I~tIIHK(E) ~ (1 -- ~)][~[[oo and we get 

a contradiction. The other direction is equally obvious. | 

7. An open question 

Earle, Gardiner and Lakic have defined the Asymptotic Teichmiiller space AT(X)  
when X is a Riemann surface and have shown that AT(X)  is a complex manifold 

(see [5]). The principle of Teichmiiller contraction also holds for the Asymptotic 

Teichmiiller space; see Chapter 14 of [9] for a proof. It would be interesting to de- 

fine the Asymptotic Teichmiiller space AT(E) and study Teichmiiller contraction 

in that  setting. 
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